Датчики систем управления двигателем

Датчики двигателя внутреннего сгорания

Работа всех систем и узлов современного автомобиля контролируется электронным блоком управления (ЭБУ). Это прежде всего касается такого сложного агрегата как двигатель внутреннего сгорания, работа которого согласовывается электроникой. Но для нормальной работы ЭБУ должен получать соответствующие данные, которые снимаются с датчиков, установленных непосредственно в моторе автомобиля.

Зачем нужны датчики в моторе?

Различные производители предлагают свои датчики, но со временем выработался определенный перечень, который можно встретить практически в любом двигателе внутреннего сгорания с инжекторной топливной системой.

Некоторые из этих датчиков доносят информацию о текущем состоянии двигателя в ЭБУ и водителю на приборную панель, а при поломке некоторых из них, например, ДПКВ, автомобиль попросту не заведется.

Подробнее о работе датчиков

Каждый датчик собирает информацию и подает ее на ЭБУ, что позволяет обеспечить бесперебойную работу двигателя и предоставить исчерпывающую информацию о его состоянии. Для этого требуется понять, для чего устанавливается каждый датчик и за что он отвечает.

Датчик массового расхода воздуха устанавливается во впускном воздушном канале, между воздушным фильтром и дроссельной заслонкой. Его основная функция – измерение количества поступающего в двигатель воздуха. Согласно показаниям ДМРВ электронным блоком управления высчитывается оптимальное количество топлива, соответствующее объему поступившего в двигатель воздуха. ЭБУ подает команду на форсунки, через которые и поступает необходимое количество топлива.

Датчик положения дроссельной заслонки располагается непосредственно на заслонке, обязательно до впускного коллектора. Он указывает на положение заслонки в каждый момент времени и динамике его изменения. Положение дроссельной заслонки, в свою очередь, изменяется при нажатии педали газа водителем. Исходя из показаний этого датчика ЭБУ обеспечивает увеличение или снижение интенсивности подачи топлива в камеры сгорания, мотор набирает или снижает обороты. При полностью закрытой заслонке, подача воздуха происходит через регулятор холостого хода, а количество подаваемого топлива снижается.

Датчик положения коленчатого вала располагается в непосредственной близости возле шкива коленвала. Его задача определять положение и скорость вращения вала в текущий момент времени. Для обеспечения работы ДПКВ на шкиве устанавливается специальный зубчатый диск с несколькими убранными зубами, что позволяет четко определять положение коленчатого вала. В разных двигателях датчик может находиться в других местах, но обязательно в непосредственной близости от коленвала, например, возле маховика. Данные передаваемые датчиком положения коленчатого вала на ЭБУ позволяют точно определить такт впрыска топлива и угол опережения зажигания, они же являются основой для выдачи информации об оборотах двигателя на тахометре.

Датчик положения распределительного вала находится около головки блока цилиндров возле распредвала. ДПРВ определяет его положение в реальном времени, в самом простом исполнении он подает сигнал, когда поршень первого цилиндра выходит в верхнюю мертвую точку (такт сжатия). На основе этих данных ЭБУ подает команду на впрыск топлива в определенный цилиндр и зажигание.

Датчик детонации в большинстве двигателей установлен в верхней части блока цилиндров, возле камер сгорания, как правило, между 2 и 3 цилиндрами. Его задача улавливать металлический стук, образующийся в цилиндрах при детонации топлива, которая может серьезно повредить двигатель. Поступающая от датчика информация позволяет ЭБУ устанавливать нужный угол опережения, убирая ненужный эффект.

Датчик температуры охлаждающей жидкости расположен в части двигателя, где охлаждающая жидкость выходит из него, чаще всего это головка блока цилиндров или термостат. ДТОЖ указывает на температуру тосола, что влияет на работу двигателя после запуска. Если температура низкая, ЭБУ дает команду повысить холостые обороты за счет обогащения топливно-воздушной смеси и корректировки угла опережения зажигания. После набора рабочей температуры подается команда снизить обороты. При повышении значения рабочей температуры датчик подает сигнал, включающий вентиляторы охлаждения радиатора, кроме того, данные по температуре охлаждающей жидкости отражаются на приборной панели.

Датчик кислорода установлен в выхлопной системе в выпускном коллекторе или за ним, но до катализатора. Иногда дополнительный датчик устанавливается уже после катализатора. Они оценивают концентрацию кислорода в выхлопном газе. Первый датчик определяет количество кислорода на выходе из двигателя, второй – на выходе из катализатора, его называют диагностическим. По данным первого датчика блок управления обогащает или обедняет топливно-воздушную смесь, в зависимости от того, сколько кислорода осталось в выхлопных газах. Диагностический ДК указывает на эффективность катализатора, одновременно корректируя подачу топлива.

Датчик скорости автомобиля в большинстве случаев располагается в верхней части коробки передач. Он изменяет скорость вращения валов после изменения передаточного числа коробки передач (переключения скорости). Это позволяет определить частоту вращения колес, а значит, скорость автомобиля. Популярный способ измерения – считывание данных с зубчатого венца, установленного на дифференциале. В некоторых автомобилях в качестве ДСА выступает датчик АБС возле колеса, которые считывает данные с зубчатого венца, установленного на ШРУСе. Информация о скорости автомобиля поступает на ЭБУ, который корректирует подачу топлива, а также на спидометр.

Датчик давления масла, в зависимости от конструкции двигателя, может располагаться возле масляного фильтра или в дальней точке – головке блока цилиндров. Он определяет давления масла к системе смазки мотора. Показания ДДМ никак не влияют на работу двигателя, но при падении давления масла, проблему нужно срочно решать поскольку двигатель быстро выйдет из строя и потребуется дорогостоящий ремонт. Об этом просигнализирует предупреждающая лампочка на приборной панели.

Датчик температуры всасываемого воздуха часто располагается в одном корпусе с ДМРВ или отдельно в системе впуска. По температуре всасываемого воздуха ЭБУ вычисляет его плотность, регулируя подачу топлива для достижения нужного обогащения топливно-воздушной смеси.

Дополнительные датчики

Датчик абсолютного давления находится во впускном коллекторе или закрепляется на автомобильном кузове, соединяясь с впускным коллектором гибкой трубочкой. Задача ДАД – измерение давления во впускном коллекторе. На основе этих данных ЭБУ рассчитывает расход воздуха двигателем, образуя идеальные параметры топливно-воздушной смеси. Фактически, он заменяет ДМРВ, но иногда работает с ним в паре, сообщая дополнительную информацию.

Датчик неровной дороги прикрепляется к кузову возле крепления одного из амортизаторов. Он улавливает колебания в вертикальной плоскости при движении автомобиля, определяя, что он двигается по неровной дороге. Данный от датчика поступают в блок управления и он отключает функцию диагностики пропусков зажигания, которая работает при неравномерном вращении коленвала.

Если какой-либо из датчиков неисправен, ЭБУ дает команду перехода в аварийный режим работы. При этом недостающая информацию заменяется усредненными данными, вшитыми в его память. Это не касается ДПКВ, при котором двигатель не работает. О том, что какой-то датчик вышел из строя предупреждает лампочка, загорающаяся на приборной панели с надписью CHECK или CHECK ENGINE. Чтобы понять, что именно происходит с автомобилем, требуется провести компьютерную диагностику ЭБУ.

Видео: Датчики ДВС

Источник

Датчики в наших ДВС: назначение и принцип работы

Современные автомобили оснащены большим количеством датчиков, назначение и принцип действия которых понятны далеко не каждому автолюбителю. Попробуем разобраться в этом вопросе.

Датчик массового расхода воздуха

Назначение датчика массового расхода воздуха (ДМРВ) заключается в контроле работы силового агрегата во время генерации системой электрического напряжения, посредством поступающего в мотор воздуха.

На основании собираемых датчиком данных строится максимально продуктивная работа мотора, во время которой поступление воздуха в цилиндры позволяет бесперебойно преобразовывать его в электрический ток.

Рабочая часть датчика – платиновая нить представляет собой чувствительный анемометр. Она нагревается до постоянной температуры, которая удерживается при помощи термореле и электронного блока управления.

Проходящий через датчик воздушный поток охлаждает нить, тогда управляющий модуль системы увеличивает подачу тока на нее, вследствие чего температура нагрева нити продолжает увеличиваться, пока не достигнет своего постоянного значения. Из этого следует, что сила необходимого для разогрева нити тока, зависит исключительно от скорости прохождения потоков воздуха через датчик. А уже посредством вторичного преобразователя в системе датчика происходит генерация электрического напряжения.

Читайте также:  Диета для очищения кожи прыщи

В процессе работы на нити датчика накапливаются различные отложения, загрязняя ее и ухудшая характеристики всего устройства.

Эффективная очистка нити возможна только при помощи прожига импульсным током с температурой порядка 1 тыс. градусов.

Однако промывать грязную платиновую нить датчика растворами, содержащими эфирные или кетоновые соединения, категорически запрещено, поскольку они:

– губительно воздействуют на компаунд;

– обладают способностью к охлаждению кристалла, в результате чего повреждается его структура;

– смывают так называемую маску с поверхности кристалла (защитный полимерный слой в его центре).

Не стоит даже пытаться промыть нить датчика различными растворителями и аэрозолями, содержащими ацетон и этил, также нельзя очищать нить анемометра смоченной в бензине ваткой, намотанной на спичку, либо деревянную палочку. Подобные манипуляции никакого эффекта не принесут, а лишь ухудшат работу ДМРВ.

В качестве промывки можно использовать ВД-40, но стоит учесть, что в ее составе находится дизтопливо и кислотные соединения. Промывает «вэдэшка» хорошо, однако, после себя оставляет специфическую пленку на поверхности, которую для нормальной работы датчика необходимо удалить. Смывать ее лучше спиртовыми составами (дистиллированная вода и любой спирт). Как показала практика, наиболее подходит для этой цели именно изопропиловый спирт. Наиболее эффективной станет промывка кристалла при помощи обыкновенного медицинского шприца с иглой малого диаметра. Перед промывкой датчик и промывочную жидкость необходимо разогреть, например, при помощи строительного фена.

Датчик контроля положения заслонки дросселя

Этот элемент устанавливается на блоке дросселя рядом с приводом, и предназначается для контроля положения газовой педали. Стоит отметить, что во время мойки силового агрегата стоит быть предельно аккуратным, дабы не повредить этот датчик.

Несмотря на то что датчик дросселя рассчитан на продолжительное использование, все же иногда подводит и он, выходя из строя. О его поломке сигнализируют повышенные холостые обороты, возникновение рывков и нестабильная работа мотора во время езды.

Датчик детонации

Он располагается на головке блока между цилиндрами (ІІ и ІІІ). В зависимости от особенностей конструкции различают следующие виды этих элементов:

– широкополосный (представлен в виде таблетки);

– резонансный (имеет вид бочонка).

Эти датчики не подлежат взаимной замене, то есть, в случае выхода из строя одного, его нельзя заменить другим типом.

Рабочий ресурс элемента огромен. Единственное, что необходимо – регулярно очищать контакты разъема от окисления. Работает этот датчик по принципу пьезозажигалки. То есть, с возрастанием уровня детонации начинает расти электрическое напряжение.

Датчик измеряет уровень детонации в силовом агрегате и, в зависимости от этого, контролирует угол опережения зажигания. В случае повышенной детонации, зажигание будет поздним. Если же датчик перестанет функционировать, двигатель начнет работать некорректно, увеличивается потребление топлива.

Он имеет шестигранную конструкцию, внутри которой расположен специальный пьезоэлемент, вырабатывающий электродвижущую силу из-за воздействия звуковых колебаний на его корпус. Получается, что датчик детонации является своеобразным передатчиком звуковых колебаний, благодаря которому блоку EFI доступны происходящие внутри мотора процессы.

Пустоты между корпусом и пьезоэлементом датчика заполнены компаундом особого состава. Помимо защитного назначения, компаунд имеет еще одно: его наличие позволяет выработать амплитудно-частотную характеристику, максимально приближенную к частоте детонационных процессов внутри силового агрегата.

При возникновении детонации во внутримоторном пространстве датчик измеряет ее уровень и передает сигнал блоку EFI, который в автоматическом режиме корректирует угол опережения зажигания, пока уровень детонации не снизится либо полностью не пропадет.

В итоге благодаря наличию датчика детонации в системе силового агрегата формируется наиболее благоприятный состав топливной смеси. Такое понятие, охарактеризованное на автомобильном сленге словосочетанием «стук пальцев», характеризует поломку датчика детонации. При этом резко снижаются рабочие характеристики мотора, и увеличивается потребление топлива.

Датчик масляного давления

Этот элемент контроля находится в магистральной сети маслопровода. Датчик запитан от электросети автомобиля и имеет индикатор на приборной панели. Кроме индикатора панель приборов может иметь контроллер масляного давления с указанием его величины.

Довольно часто этот датчик является контролирующей частью системы управления мотором, которая при достижении критического уровня масляного давления выключает силовой агрегат.

Помимо датчика масляного давления, может быть установлен датчик, контролирующий температуру моторного масла в системе.

Датчик температуры антифриза

В конструкции силового агрегата этот датчик занимает свое место между термостатом и ГБЦ. На нем предусмотрено два контакта, а в основе функционирования устройства заложен следующий принцип: чем ниже температура двигателя, тем более обогащенную рабочую смесь удается получить.

Его конструкция вполне надежна. Выйти из строя он может лишь по причине отсутствия контакта на его выводах либо внутри устройства.

О его неисправности можно судить по началу работы вентилятора в то время когда мотор еще находится в холодном состоянии, невозможности либо проблемам с запуском прогретого силового агрегата, увеличении потребления топлива.

Лямбда зонд

Либо по-простому – кислородный датчик. Его назначение сводится к определению в выхлопных газах авто количества содержания кислорода. Находится этот электрохимический элемент в конструкции глушителя.

Отсутствие кислорода в топливной смеси говорит о ее обогащенности, и, наоборот, его повышенное содержание снижает обогащение. Поэтому лямбда зонд предназначается для формирования правильного состава рабочей смеси. Более подробно о лямбде тут.

Этилированный бензин пагубно отразится на работе кислородного датчика, а в случае его поломки повышенное потребление топлива и превышение вредных соединений в выхлопных газах автомобиля – гарантировано.

Датчик ПКВ (положения коленвала)

Довольно прочный и надежный элемент, конструкция которого представляет собой катушку из провода с магнитным сердечником внутри. Он расположен в пространстве шкива, и по нанесенным на шкив рискам считывает показания положения коленчатого вала. Элемент генерирует сигнал, как только меняется положение расположенного на коленвале зубчатого диска. На основании этого сигнала блок управления отслеживает рабочие процессы, происходящие внутри цилиндра, и управляет подачей топливной смеси и искры.

В случае его поломки, рабочие обороты мотора резко упадут, а в худшем случае – силовой агрегат полностью остановится.

Датчик фаз или датчик положения распредвала (ДПРВ)

Входит в конструкцию, как правило, восьми- и шестнадцатиклапанных моторов, на которых располагается сразу за шкивом распредвала системы впуска сверху головки блока, и предназначается для формирования топливовпрыска в отдельно взятый цилиндр. Его поломка нарушает подачу топливной смеси, что вызывает ее резкое обогащение, как следствие увеличенный расход.

Регулятор холостых оборотов

Незаменимый элемент в устройстве мотора, который регулирует холостые обороты двигателя, обеспечивая его стабильную и максимально продуктивную работу. Конструкция устройства состоит из шагового электромотора с пружинной иглой конусного типа.

На работающем на холостых оборотах силовом агрегате воздух циркулирует мимо закрытой дроссельной заслонки. Это возможно благодаря конусной игле датчика, которая регулирует диаметр сечения дополнительной магистрали подачи воздуха. Таким образом датчик определяет оптимальное количество кислорода, необходимое для бесперебойной и продуктивной работы агрегата.

Месторасположение регулятора – корпус заслонки дросселя. Здесь необходимо обратить внимание на то, что крепится он при помощи двух винтов, головки которых у большинства авто покрыты слоем лака либо попросту рассверлены, что представляет некоторую помеху при снятии регулятора холостых оборотов. Поэтому нередко приходится прибегать к снятию корпуса заслонки для того, чтобы заменить регулятор либо прочистить загрязненную воздушную магистраль.

Поскольку регулятор относится к исполнительному типу устройств, его системная диагностика не предусмотрена. Поэтому в случае его поломки ошибка «Проверьте двигатель» на панели приборов может и не загореться.

На его неисправность указывают следующие факторы:

– «плавающие» холостые обороты мотора;

– часто силовой агрегат глохнет после выключения передачи;

– холодный пуск мотора не сопровождается повышением оборотов холостого хода, как это должно быть;

– нестабильность холостых оборотов во время включения нагрузки.

Снимать регулятор холостых оборотов необходимо только при отключенном аккумуляторе. Для этого с него снимется разъем и выкручиваются винты, крепящие датчик. Устанавливается регулятор в обратной последовательности. Единственное, что нужно сделать в момент его монтажа – смазать уплотнитель на фланце. Для этого идеально подойдет моторное масло.

Читайте также:  Вес 2600 рост 47

Взаимосвязь разных типов датчиков в системе регулировки холостых оборотов мотора

Количество находящегося в моторе воздуха контролируется описанным выше датчиком ДМРВ, и в зависимости от его объема ЭБУ производит расчет подачи обогащенной рабочей смеси в двигатель.

При помощи датчика положения коленвала блок управления определяет обороты моторного агрегата, и на основании этого система регулировки холостого хода управляет подачей воздуха, минуя закрытую заслонку дросселя.

Во время стоянки блок управления поддерживает постоянную величину холостых оборотов на прогретом моторе. Если силовой агрегат холодный, система посредством регулировки оборотов холостого хода увеличивает их, обеспечивая мотору прогрев на высоких оборотах. Благодаря этому допускается движение без прогрева силового агрегата.

Все перечисленные датчики встречаются на большинстве современных автомобилях, и теперь вам будет намного легче ориентироваться в результатах диагностики и покупки необходимой запчасти в автомагазине.

Источник

Устройство автомобилей

Микропроцессорное управление двигателем

Виды датчиков и их назначение

Микропроцессорная система управления корректирует состав горючей смеси, поступающей в цилиндры двигателя и процессы ее поджигания на основании информации, поступающей от многочисленных датчиков, расположенных в разных местах двигателя и его систем. Эти датчики позволяют процессору сформировать команды продолжительности впрыска топлива форсунками, а также момент подачи напряжения искрообразования на свечи зажигания.
Благодаря этой сложной информационной сети, поставляющей в «мозговой центр» управления двигателем данные о количестве поступившего в цилиндры воздуха, его температуре, температуре двигателя, положению педали акселератора и дроссельной заслонки, угловом перемещении коленчатого и распределительного валов, а также о составе отработавших газов, достигается высокая экономичность и динамическая эффективность работы двигателя.

Более подробная информация о типах датчиков и их классификация приведена на этой странице.

Датчик массового расхода воздуха

Датчик массового расхода воздуха (ДМРВ) преобразует значение массы воздуха, поступающего в цилиндры, в электрический сигнал. Контроллер использует информацию от датчика массового расхода топлива воздуха для определения длительности импульса открытия форсунок.
Чаще всего этот датчик расположен между воздушным фильтром и шлангом впускной трубы.

В зависимости от устройства и принципа действия можно выделить несколько типов датчиков массового расхода воздуха, которые наиболее часто применяются на автомобилях:

Термоанемометрический датчик массового расхода воздуха применяется на автомобилях ВАЗ и состоит из корпуса, проточного канала с размещенной на входе решеткой-стабилизатором и диффузора. В обводном канале размещены измерительные и термический компенсационные элементы, а также соединительная электрическая колодка.
Датчик установлен во впускном тракте между воздушным фильтром и корпусом дроссельной заслонки.

Через сетку из тонких платиновых нитей (измерительных элементов), нагретых электрическим током до температуры 170 ˚С, проходит весь поступающий в цилиндры двигателя воздух. Чем больше поток, тем выше должна быть сила тока, чтобы поддерживать температуру нитей на постоянном уровне.

Входящий поток воздуха охлаждает чувствительный элемент, следовательно, для поддержания его температуры необходим больший ток. По тому, насколько увеличился ток, блок управления двигателем определяет, какое количество воздуха поступает в двигатель.
Некоторые ДМРВ выдавали частотные выходные сигналы, т.е. у них изменяемой величиной была частота выходных импульсов. Такие датчики массового расхода воздуха применялись в двигателях автомобилей ВАЗ, оснащенных контроллером «Январь-4.1».

Отсутствие регулировочных винтов указывает на то, что данная система управления является адаптивной. Внутренняя электронная схема сконструирована таким образом, что температура измерительной нити остается постоянной, даже если она на 120 ˚С выше температуры поступающего воздуха.

Обобщенная электрическая схема соединений датчика содержит измерительные элементы, термические компенсационные резисторы и блок усиления сигналов, соединенный с контроллером. Выходной сигнал датчика – частотный.

Загрязнение нити может привести к неточному определении параметров горючей смеси. Функция прокаливания нити включается, когда система отключена. В этом случае происходит нагревание нити до 1000 ˚С, что позволяет удалить скопившиеся на ней отложения.

Современные датчики массового расхода воздуха имеют более сложное устройство. Вместо проволоки или сетки, в качестве чувствительного элемента используется тонкая пленка, на которой размещены температурные датчики и нагревательный элемент. В центре пленки находится зона подогрева, степень ее нагрева контролируют температурные датчики.
По обе стороны пленки расположены два дополнительных температурных датчика, т.е. один находится прямо на пути воздушного потока, а второй скрыт за пленкой. Когда автомобиль стоит на месте, температура обоих датчиков одинакова, при движении первый датчик охлаждается входящим потоком воздуха, а второй имеет практически неизменную температуру. Разница температур температурных датчиков пропорциональна массе всасываемого воздуха.

При отказе датчика массового расхода воздуха блок управления переходит в аварийный режим работы, используя для формирования команд длительности впрыска только информацию о положении дроссельной заслонки. В результате возрастает расход топлива, а частота вращения коленчатого вала не опускается ниже 1500 об/мин.
Чтобы проверить исправность датчика, его следует отключить от электрического разъема. Если автомобиль при отключении датчика становится резвее, значит, ДМРВ неисправен.

Датчик скорости

Датчик скорости автомобиля (ДСА) преобразует значение скорости автомобиля в электрический сигнал. Он предназначен для формирования импульсов, количество которых в единицу времени пропорционально скорости автомобиля.

Датчик скорости установлен на коробке передач (сверху), информирует контроллер о скорости автомобиля и имеет средний уровень надежности. Вблизи датчика часто происходит окисление разъемов и проводов.
Выход из строя датчика скорости приводит к тому, что двигатель глохнет при движении в режиме холостого хода, т. е. при закрытой дроссельной заслонке.

Этот датчик при неисправности передает ошибочные данные, что и приводит к нарушению работы не только двигателя, но и других узлов автомобиля. Измеритель скорости автомобиля (ДСА) отсылает сигналы на датчик, который контролирует работу мотора на холостых оборотах, а также управляет потоком воздуха, который обходит дроссельную заслонку. Чем больше скорость машины, тем больше частота этих сигналов.

Основные признаки неисправности датчика скорости:

Также блок управления может выдавать ошибку об отсутствии сигналов на ДСА.
Чаще всего неисправность вызывается разрывом цепи, поэтому, прежде всего, нужно проверить ее целостность.

Датчики кислорода

Датчик кислорода диагностический преобразует значение концентрации кислорода в отработавших газах после нейтрализатора в электрический сигнал.

Датчик кислорода управляющий преобразует значение концентрации кислорода в отработавших газах до нейтрализатора в электрический сигнал.

Кислородный датчик представляет собой своеобразный гальванический элемент (источник электрического тока), размещенный в системе выпуска отработавших газов перед нейтрализатором (в среду горячих газов).
Внешне кислородный датчик напоминает свечу зажигания, имеет резьбовую часть с резьбой 18×1,5 мм, которая вворачивается в трубу системы выпуска отработавших газов, и несколько отходящих от наружного хвостовика проводов.

Чувствительным элементом кислородного датчика является омываемый отработавшими газами керамический наконечник 4 ( см. рис. ), защищенный от механических повреждений металлическим кожухом 5 с прорезями для свободного прохода отработавших газов. Внутренняя часть керамического наконечника омывается атмосферным воздухом, проникающим через щели в корпусе датчика.

Кислородные датчики бывают двух типов: циркониевые и титановые.
Циркониевые кислородные датчики используют керамический элемент на основе оксида циркония ZrO, покрытый платиной – гальванический элемент, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Циркониевые датчики наиболее распространены.

Титановые кислородные датчики используют керамический элемент на основе диоксида титана TiO2 и представляют собой резистор, сопротивление которого изменяется в зависимости от температуры и наличия кислорода в окружающей среде. Принцип работы титановых кислородных датчиков напоминает принцип работы датчиков температуры охлаждающей жидкости.

Для эффективной работы датчика он должен быть достаточно прогрет (но не перегрет), а также не должен быть загрязнен свинцом и кремнием, содержащимися в выхлопных газах. Для ускорения прогрева датчиков кислорода большинство современных датчиков кислорода оснащаются специальными электрическими подогревательными устройствами.

По сигналам кислородных датчиков контроллер корректирует длительность впрыска, изменяя тем самым состав горючей смеси в цилиндрах двигателя.

Датчик фаз

Датчик фаз или, как его еще называют – датчик положения распределительного вала (ДПРВ), выдает на контроллер сигнал о том, что поршень первого цилиндра находится в верхней мертвой точке (ВМТ) на такте сжатия топливовоздушной смеси. Датчик фаз применяют в системе с последовательным впрыском топлива и устанавливают с левой передней стороны головки цилиндров.

Читайте также:  Вес швеллера стального гнутого

Принцип его действия основан на эффекте Холла. В пазу датчика находится обод стального диска с прорезью. Этот диск закреплен на шкиве впускного распределительного вала. Когда прорезь диска проходит через паз датчика фаз, он выдает на контроллер электрический импульс, соответствующий положению поршня первого цилиндра в ВМТ в конце такта сжатия.

Наиболее характерные признаки неисправности датчика фаз:

Датчик температуры охлаждающей жидкости

Датчик температуры охлаждающей жидкости (ДТОЖ) преобразует в электрический сигнал значение температуры охлаждающей жидкости и представляет собой термический резистор, размещенный в латунном корпусе. Сопротивление термического резистора изменяется в зависимости от его температуры – чем выше температура датчика (т. е. – чем выше температура охлаждающей жидкости в системе охлаждения), тем ниже его сопротивление.
Контроллер, принимая сигнал от датчика температуры охлаждающей жидкости, корректирует продолжительность впрыска и угол опережения зажигания.
Датчик температуры охлаждающей жидкости выполняет функцию, аналогичную системе пуска и прогрева в карбюраторном двигателе, обогащая горючую смесь при низкой температуре двигателя.
Кроме того, по сигналу ДТОЖ контроллер управляет включением и выключением электродвигателя вентилятора системы охлаждения.

Датчик температуры охлаждающей жидкости влияет на важнейшие динамические, пусковые и экономические характеристики двигателя.
Основными признаками его неисправности являются:

Проверить работоспособность датчика температуры охлаждающей жидкости достаточно просто. Для этого снятый датчик помещают в емкость с водой так, чтобы он не касался стенок и дна емкости. Далее подключают к контактам датчика омметр и начинают нагревать воду, контролируя температуру по термометру.
Контрольные показания должны быть примерно следующими:

Датчик положения коленчатого вала

Датчик положения коленчатого вала (ДПКВ) преобразует угловое положение коленчатого вала двигателя в импульсный электрический сигнал, на основании которого контроллер определяет положение коленчатого вала двигателя относительно ВМТ и частоту его вращения. По результатам измерения этих параметров контроллер формирует сигналы управления форсунками и системой зажигания, а также показания тахометра.
Датчик положения коленчатого вала – единственный из всех датчиков, подающих информацию контроллеру, при отказе которого работа двигателя невозможна.
По аналогии с контактной системой зажигания этот датчик выполняет функцию прерывателя, сигнализируя контроллеру о времени подачи искры, однако он формирует, также, сигнал о начале впрыска топлива форсунками.

Существует несколько типов датчика оборотов коленчатого вала:

Магнитные датчики индуктивного типа не требуют для своего потребления особого отдельного источника питания. Для сигнала электронного блока управления индицируется напряжение в определенный момент, когда через магнитное поле проходит зуб синхронизации. Это магнитное поле образуется вокруг датчика. Кроме того, что датчик контролирует обороты коленчатого вала; он также зачастую используется как скоростной датчик.

Конструктивно магнитный ДПКВ представляет собой катушку с большим количеством витков провода, расположенную на магнитопроводе. На коленчатом валу двигателя (со стороны шкива) размещен зубчатый диск, при вращении которого в катушке датчика формируется импульсное напряжение, поступающее в виде информации о положении коленчатого вала к контроллеру.
По внешней окружности диска равномерно выполнены радиальные прямоугольные зубья, при этом один зуб отсутствует. Именно этот паз на диске формирует импульс, указывающий контроллеру о положении коленчатого вала.
Радиальный зазор между зубьями диска и магнитопроводом датчика составляет 1 мм.
Нормальная работа датчика может быть нарушена налипанием на магнитопровод металлических частиц, загрязнением зубчатого диска, увеличением зазора между магнитопроводом и диском и т. п.

Датчик Холла основывается на эффекте Холла, суть которого в том, что если в постоянном магнитном поле разместить металлическую пластину, то при появлении в этом же магнитном поле металлического предмета, в пластине формируется электрический импульс (ток), который может быть использован в качестве сигнала. Потенциал, возникающий между гранями пластины очень слабый, поэтому использование эффекта Холла в датчиках стало возможным лишь недавно, с появлением устройств, способных считывать и усиливать такие импульсы.
В качестве формирователя импульсов используется диск синхронизации, возмущающий магнитное поле вокруг датчика с помощью зубьев, равномерно размещенных на ободе. Датчик оборотов коленчатого вала данного типа также используется для распределения зажигания.

Оптический датчик положения коленчатого вала. В данном типе датчиков диск синхронизации выполняется с зубьями или отверстиями. Сам диск перекрывает поток света, который проходит между светоизлучателем (светодиодом) и светоприемником (фотоэлементом). Приемник перерабатывает полученный поток света в импульс напряжения, который, собственно, и передается в электронный блок управления.

Для проверки работоспособности датчика необходимо проверить наличие сигналов контроллера на любой из форсунок и катушке зажигания.
Практически это можно сделать следующим образом: отсоединить разъемы от форсунки и катушки зажигания, подключить к контактам каждого разъема ламповый пробник (необязательно одновременно, можно поочередно), и прокрутить двигатель стартером. Если нет сигналов ни на форсунке, ни на катушке зажигания, то это в большинстве случаев свидетельствует о неисправности датчика положения коленчатого вала.

Для более точного диагностирования необходимо убедиться в исправности самого контроллера, соединительной проводки и предохранителей цепи. Если же лампа хоть одного пробника будет мигать при вращении коленчатого вала, то это свидетельствует об исправности ДПКВ.
При отсутствии пробника или тестера можно вывернуть свечу зажигания и осмотреть ее. Если она влажная – это свидетельствует о том, что сигнал на форсунку поступает и впрыск происходит, т. е. можно сделать вывод об исправности датчика положения коленчатого вала.
Дальнейшие проверки можно не проводить.

Если же оказалось, что свеча сухая, то следует дополнительно проверить наличие искры. Для этого нужно обеспечить надежный контакт свечи с «массой» двигателя (например, соединить резьбовую часть свечи толстым проводом с корпусом двигателя), а на верхний контакт надеть свечной наконечник. Очень важно, чтобы контакты были надежно присоединены к свече, иначе можно испортить контроллер.
Если при работе стартера искра есть, то ДПКВ исправен. Отсутствие искры является признаком неисправности ДПКВ.

Есть еще один оригинальный способ проверки исправности датчика положения коленчатого вала. Для этого датчик снимают с кронштейна и подключают к нему колодку с проводами. Если при включенном зажигании к магнитопроводящей пластине датчика прижимать, а через некоторое время отнимать металлический (магнитопроводный) предмет (например, гаечный ключ), то будет срабатывать топливный насос, размещенный в топливном баке, что свидетельствует о работоспособности датчика.
Для того, чтобы хорошо слышать работу насоса, во время проверки датчика двери кузова нужно открыть, а заднее сиденье поднять.

Датчик положения дроссельной заслонки

Датчик положения дроссельной заслонки (ДПДЗ) преобразует значение угла открытия дроссельной заслонки в электрический сигнал.
Этот датчик работает совместно с датчиком положения педали акселератора, так как контроллер, обрабатывая сигнал от датчика педали, сравнивает его с текущим положением дроссельной заслонки.

Датчик положения дроссельной заслонки представляет собой потенциометрический датчик и связан с осью дроссельной заслонки. Снаружи его не видно, так как он расположен внутри дроссельного блока и при отказе его заменяют вместе с блоком. В этом случае, а также при замене контроллера, потребуется выполнить «обучение» контроллера закрытому положению дроссельной заслонки. Оно заключается в следующем:

Датчик детонации

Датчик детонации жестко закреплен на корпусе двигателя и преобразует величину механических шумов двигателя в электрический сигнал. Контроллер по сигналу датчика детонации производит уменьшение угла опережения зажигания, устраняя при этом детонацию.

Чувствительным элементом датчика детонации является пьезокерамический элемент. Он формирует электрический сигнал, амплитуда и частота которого соответствует амплитуде и частоте вибрации двигателя. Моменту детонации соответствует узкий диапазон сигнала определенной частоты и амплитуды, который обрабатывается контроллером, после чего он корректирует угол опережения зажигания до исчезновения детонации.

Для проверки датчика детонации следует подключить к его контактам милливольтметр (тестер) и ударить по корпусу датчика каким-либо предметом (например, рукояткой отвертки). Тестер должен зафиксировать скачок напряжения. Отказ датчика детонации контролером не парируется.
При управлении автомобилем при заведомо неисправном датчике детонации следует избегать резких увеличений нагрузки на двигатель, своевременно переходить на пониженные передачи при преодолении препятствий, не допуская возникновения звонких детонационных стуков, которые хорошо различимы на слух.

Источник

Жизненные советы и рекомендации